Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Integration of Real and Virtual Tools for Suspension Development

2011-01-19
2011-26-0115
Suspension development is one of the key steps in a complete vehicle development program. Computer simulation and analysis tools such as Multi Body Dynamics (MBD) simulation are used to refine initial concept and suspension parameters. Later on when a physical prototype is available the suspension system can be experimentally optimized at vehicle level. In this paper a new methodology is proposed which integrates virtual and experimental tools so that design, development and validation of the suspension system is carried out in the early phase of the vehicle development cycle with actual suspension components and without the need of a vehicle prototype. With this new approach, the design of any critical suspension components such as dampers can be optimized at the vehicle level. The new approach consists of combining the actual physical components on loading rig in closed loop with vehicle dynamic model running in real time.
Technical Paper

Influence of Rake Angle and Cutting Speed on Residual Stresses Developed in Cutting Tool during Turning Operation

2014-04-28
2014-28-0014
In this work, the effect of tool rake angle and cutting speed on residual stresses of tool was studied, the rake angles of 0°, 5°, 10°, 15°, and 20° and a constant clearance (Relief angle) of 8° were used to turn bright mild steel on the lathe machine, A total of 15 experiments were carried out with three different cutting speeds (37.69, 59.37, 94.24 m/min) for each rake angle, keeping the feed rate and depth of cut constant. During the experimentation, the residual stresses were measured using an x-ray diffractiometer. This is all in order to explore the energy savings opportunities during regrinding of tools, useful production time and energy is being wasted due to regrinding or re-sharpening of tools when cutting tools got worn or blunt, selection of the rake angle which generate the optimum residual stresses in the tool, goes a long way in saving these time and energy.
Technical Paper

Improving Calibration Quality by Virtual Testing Approach for BS VI Emission Norms

2019-01-09
2019-26-0252
BS-VI or equivalent development calls for tremendous efforts in concept investigation and calibration for engine out, after treatment, diagnostic checks, off-cycle emissions, field performance, component safety etc. Achieving calibration quality for all these tasks is very challenging considering development time and cost with conventional physical testing approach. Present article focuses on assessment of testing and calibration using virtual approach. To prove and validate this approach, a six-cylinder heavy duty diesel engine is selected and configured in HiL environment. The engine plant model is built offline and validated with base engine data at steady state and transient operations and RT model is integrated with ECU hardware. Data for plant model corrections is generated with short measurement campaign. Refined real time plant model is prepared for evaluating different calibration strategies on virtual test bed environment.
Technical Paper

Heat-Treatment Process Optimization Using Dilatometry Technique and Simulation Tools

2019-01-09
2019-26-0242
Any metal component undergoes various treatments to get desired shape and desired properties. Some of the important properties are strength, hardness, % elongation etc. which comes under mechanical properties. These properties can be easily achieved through heat-treatment process. Typical example of heat-treatment processes are hardening and tempering in case of steel and aging process in case of aluminium alloys. Some of the new emerging materials viz. micro alloy steel does not require any hardening and tempering if cooling rate is maintained. Heat-treatment cycle depends on material grade and its alloying elements. A heat-treatment cycle for any grade is generally fixed based on conventional methods but they are not optimized. The need of hour is to optimize the heat-treatment cycle to improve productivity and energy consumption. Dilatometer is used to optimize heat-treatment cycle on sample level whereas simulation tools can be used for component level.
Technical Paper

Gear Noise Reduction through Transmission Error Control and Gear Blank Dynamic Tuning

1999-05-17
1999-01-1766
Gear whine can be reduced through a combination of gear parameter selection and manufacturing process design directed at reducing the effective transmission error. The process of gear selection and profile modification design is greatly facilitated through the use of simulation tools to evaluate the details of the tooth contact analysis through the roll angle, including the effect of gear tooth, gear blank and shaft deflections under load. The simulation of transmission error for a range of gear designs under consideration was shown to provide a 3-5 dB range in transmission error. Use of these tools enables the designer to achieve these lower noise limits. An equally important concern is the dynamic mesh stiffness and transmissibility of force from the mesh to the bearings. Design parameters which affect these issues will determine the sensitivity of a transmission to a given level of transmission error.
Journal Article

Fast Crank-Angle Based 0D Simulation of Combustion Engine Cold Tests including Manufacturing Faults and Production Spread

2016-04-05
2016-01-1374
During series production of modern combustion engines a major challenge is to ensure the correct operation of every engine part. A common method is to test engines in end-of-line (EOL) cold test stations, where the engines are not fired but tugged by an electric motor. In this work we present a physically based 0D model for dynamic simulation of combustion engines under EOL test conditions. Our goals are the analysis of manufacturing faults regarding their detectability and the enhancement of test procedures under varying environmental conditions. Physical experiments are prohibitive in production environments, and the simulative approach reduces them to a minimum. This model is the first known to the authors exploring advanced engine test methods under production conditions. The model supports a wide range of manufacturing faults (with adjustable magnitude) as well as error-free production spread in engine components.
Journal Article

Extended Steady State Lap Time Simulation for Analyzing Transient Vehicle Behavior

2013-04-08
2013-01-0806
The extended steady state lap time simulation combines a quasi steady state approach with a transient vehicle model. The transient states are treated as distance dependent parameters during the calculation of the optimal lap by the quasi steady state method. The quasi steady state result is used afterwards to calculate a new dynamic behavior, which induces in turn a different quasi steady state solution. This iteration between the two parts is repeated until the dynamic states have settled. An implementation of the extended quasi steady state simulation is built up to determine the capabilities of the approach. In addition to pure steady state simulation abilities, the method is able to judge the influence of the transient or time variant vehicle states on lap time. Sensitivity studies are generated to analyze the influence of basic parameters like mass, but also the influence of parameters with transient interaction like vertical damping or tire temperature.
Journal Article

Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car

2014-04-01
2014-01-0582
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car.
Technical Paper

Experimental and Numerical Investigations on Isolated, Treaded and Rotating Car Wheels

2020-04-14
2020-01-0686
Wheels on passenger vehicles cause about 25% of the aerodynamic drag. The interference of rims and tires in combination with the rotation result in strongly turbulent wake regions with complex flow phenomena. These wake structures interact with the flow around the vehicle. To understand the wake structures of wheels and their impact on the aerodynamic drag of the vehicle, the complexity was reduced by investigating a standalone tire in the wind tunnel. The wake region behind the wheel is investigated via Particle Image Velocimetry (PIV). The average flow field behind the investigated wheels is captured with this method and offers insight into the flow field. The investigation of the wake region allows for the connection of changes in the flow field to the change of tires and rims. Due to increased calculation performance, sophisticated computational fluid dynamics (CFD) simulations can capture detailed geometries like the tire tread and the movement of the rim.
Journal Article

E-Mobility-Opportunities and Challenges of Integrated Corner Solutions

2021-04-06
2021-01-0984
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Current e-vehicle platforms still present architectural similarities with respect to combustion engine vehicle (e.g., centralized motor). Target of the European project EVC1000 is to introduce corner solutions with in-wheel motors supported by electrified chassis components (brake-by-wire, active suspension) and advanced control strategies for full potential exploitation. Especially, it is expected that this solution will provide more architectural freedom toward “design-for-purpose” vehicles built for dedicated usage models, further providing higher performances.
Technical Paper

Dynamic Response Evaluation of a Chassis of a Generator Set Using FEA techniques

2019-01-09
2019-26-0198
A Generator set is comprised of mainly an Engine, Alternator and Chassis. High Horse-Power Generator development is challenging, with lots of complexities in physical and virtual validations. Creating high fidelity analytical model is always beneficial and economical at the design stages as it avoids repetitive tests on various design concepts. This paper reports analytical methods of developing an FEA model of a Generator for locomotive application and its correlation with Test. Highlighted as well are some of the challenges faced in FE modeling of a large Generator model (60 liters engine capacity) with node count of around 4 million. In this technique, Modal Analysis is first performed to capture the dynamic behavior. More than 95 % correlation is achieved between the FEA and test natural frequencies (Bending modes). Harmonic Analysis with Modal Superposition is then applied to understand the dynamic response of a Chassis under the action of engine vibratory loads.
Technical Paper

Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution

2009-04-20
2009-01-0914
The SCR after treatment system is already in production for passenger car engines with a single exhaust system. In this case, the exhaust system has to be designed very carefully to optimize the Ammonia distribution on the catalyst and therefore the DeNOx potential. The application to V8 engines with two turbochargers delivering the gas into two separated DOC & DPF units is an additional challenge. This paper describes the different optimization steps of such an exhaust system and the tools used during this work. After a design phase to integrate the SCR system in the exhaust geometry, a first CFD study was conducted to evaluate the performance of the basic system using one or two urea injectors. An optimization of the connection of the two tubes, directly in front of the SCR catalyst, has been designed using further CFD calculations as well as a marker gas SF6 on a cold flow bench.
Technical Paper

Digitally Controlled Servo-Hydraulic Crash Simulator

2000-03-06
2000-01-0048
The value of crash simulation has long been recognized by carmakers as an essential tool for vehicle development and certification programs. Driven by the need to minimize time-to-market for new models, cost reduction, and by consumer demand for safer cars and trucks, the industry is moving to newer technologies in crash simulation. Crash simulation provides an inexpensive means to quickly simulate the effects of a barrier crash by reproducing its basic elements - acceleration, velocity and displacement - in a nondestructive test. Crash event timing and accuracy of reproduction are critical performance factors. This paper describes the unique features and capabilities offered by a new generation of crash simulators.
Technical Paper

Development of a Parametric Model for Burn Rate Estimation in Direct Injection Diesel Engine

2019-01-09
2019-26-0035
In internal combustion engines, rate of fuel burning known as burn rate is a simplified representation of complex in-cylinder combustion process. It is considered as a prime input especially in 1D simulation tool for all important thermodynamic studies. A novel parametric model for prediction of burn rate in heavy duty Direct Injection (DI) diesel engine has been introduced in the present work. A wide range of experimental data with more focus on higher load points with different in-cylinder combustion characteristics is considered and burn rates have been generated using measured pressure trace. Generated burn rates have been studied over different phases of combustion. These burn rate shapes have been analyzed to understand the effect of fuel injection system, air management subsystem parameters along with in-cylinder conditions on combustion. Different mathematical modelling approaches for burn rate approximation like Wiebe function have been studied.
Journal Article

Development of a Full-Vehicle Hybrid-Simulation Test using Hybrid System Response Convergence (HSRC)

2012-04-16
2012-01-0763
Hybrid vehicle simulation methods combine physical test articles (vehicles, suspensions, etc.) with complementary virtual vehicle components and virtual road and driver inputs to simulate the actual vehicle operating environment. Using appropriate components, hybrid simulation offers the possibility to develop more accurate physical tests earlier, and at lower cost, than possible with conventional test methods. MTS Systems has developed Hybrid System Response Convergence (HSRC), a hybrid simulation method that can utilize existing durability test systems and detailed non-real-time virtual component models to create an accurate full-vehicle simulation test without requiring road load data acquisition. MTS Systems and Audi AG have recently completed a joint evaluation project for the HSRC hybrid simulation method using an MTS 329 road simulator at the Audi facility in Ingolstadt, Germany.
Technical Paper

Development of Autonomous Vehicle Controller

2019-01-09
2019-26-0098
Autonomous driving is looked upon as solution for future of automotive vehicles. The technology has tremendous possibilities to improve safety, fuel economy, comfort, cost of ownership etc. The project to develop an autonomous controller from scratch was undertaken, with objective to drive under selected test scenarios. The car, modified to drive using this autonomous controller, is able to handle these scenarios. The key scenarios include ability to successfully drive on tracks with well-marked lanes, Follow the route as per selected trip plan file, recognize and follow all traffic road signs, traffic signals en-route, identify other vehicles on the road or pedestrians in the lane and take the appropriate action. The development was carried out using frugal engineering approach. As the Autonomous Vehicle technology is still under development, the standard proven published approaches are not available.
Technical Paper

Design of Super Silent Enclosure for Diesel Genset Using Statistical Energy Analysis (SEA) Technique

2019-01-09
2019-26-0185
Diesel engine generators are commonly used as a power source for various industrial and residential applications. While designing diesel generator (DG) enclosures requirements of noise control, ventilation and physical protection needs to be addressed. Indian legislation requirement demands DG enclosure insertion loss (IL) to be minimum 25 dB. However for certain critical applications like hospitals, residential apartments customer demands quiet DG sets than the statutory limits. IL targets for such application ranges between 35-40 dB. The objective of this paper is to develop methodology to design ‘Super Silent’ enclosure with IL of 35 dB by Statistical Energy Analysis (SEA) approach for small capacity DG set. Major challenge was to achieve IL of 35 dB with single enclosure and making use of SEA technique for small size enclosure wherein modal densities is very less. Major airborne noise sources like engine, radiator fan and exhaust were modelled by capturing noise source test data.
Technical Paper

Design of High Speed Engine's Cam Profile Using B-Spline Functions for Controlled Dynamics

2012-01-09
2012-28-0006
Recent trends towards design of High Performance Diesel engines creating more challenges in the area of design, durability and NVH aspects of components and systems. In particular, Valvetrain system of High Speed application engines is one of the most critical and complicated dynamic system in terms of precise control of events, max. Lift, control over accelerations and vibration related issues. This can be tackled by designing the cam profile for better valve train dynamics. High frequency components and/or excessive jerks in a cam profile are important sources of cam-follower vibrations. There are various techniques of designing cam profile to achieve controlled valve train dynamic behavior at high speed operations. Present paper discuss the impact of various cam profile options designed using Polydyne, N-Harmonic and B-Spline methodologies on a field problem of cam wear for high speed engine application.
Technical Paper

Design and Development of High Performance Diesel Engines for Off-Highway and Genset Applications with Emerging Technologies

2008-10-07
2008-01-2676
To meet the latest trends in Internal Combustion engines regarding efficiency, emissions and durability, an integrated approach to engine development is required. This paper describes about a Robust, Reliable and an integrated approach used in design and development of an engine for high power density which can be adopted for both Off-highway application as well as Genset application. The engine is developed to meet US - EPA Tier-III Emission Norms and MoEF (Genset Emission Norms for India formulated by Ministry of Environment and Forest) emission norms respectively. This paper discusses various technologies applied in developing this engine to achieve high power density, low exhaust emissions, and low noise and vibrations. This 4 valve per cylinder engine is created largely within a digital environment using the latest computer aided design (CAD) and computer aided engineering (CAE) techniques and simulation tools.
Technical Paper

Component Tests Based on Vehicle Modeling and Virtual Testing

2017-03-28
2017-01-0384
ADAMS, SIMULINK, and ADAMS-SIMULINK co-simulation models of component test systems, Multi-Axis-Simulation-Table (MAST) systems, and spindle-coupled vehicle testing system (MTS 329) were created. In the ADAMS models, the mechanical parts, joints, and bushings were modeled. Hydraulic and control elements were absent. The SIMULINK models modeled control and hydraulic elements including actuator dynamics, servo valve dynamics, closed loop control, three-variable control, matrix control, and coordinate transformation. However, the specimen had to be simplified due to the limitation of SIMULINK software. The ADAMS-SIMULINK co-simulation models considered hydraulic and control components in the SIMULINK portion and mechanical components in ADAMS portion. The interaction between the ADAMS and SIMULINK portions was achieved using ADAMS/Control.
X